DOI: http://dx.doi.org/10.18782/2320-7051.5853

ISSN: 2320 – 7051 *Int. J. Pure App. Biosci.* **6** (1): 666-671 (2018)

Effect of Different Levels of Potassium and Vermicompost on Physiological Parameters Leaf Area Plant⁻¹, Leaf Area Index, Crop Growth Rate and Net Assimilation Rate of Potato (*Solanum tuberosum* L.)

Smita Agrawal^{*}, R. Lekhi, Payal Patidar and Priyanka Gangle

Department of Horticulture, R. V. S. K. V. V. COA, Gwalior (M. P.) *Corresponding Author E-mail: smitaagrwl558@gmail.com Received: 7.10.2017 | Revised: 15.11.2017 | Accepted: 19.11.2017

ABSTRACT

The field experiment was laid out in the experimental field of department of Horticulture, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior (M. P.) during autumn-winter season. Experiment was conducted in factorial randomized blocked design with three replication comprised of eight treatments combination $(K_1VC_0, K_1VC_1, K_2VC_0, K_2VC_1, K_2$ K_3VC_0 , K_3VC_1 , K_4VC_0 , K_4VC_1). On the basis of both the year, the data reveals that the treatment K_3 (150 kg K_2O) was observed significantly maximum in all physiological parameters followed by K_2 (100 kg K_2 O/ha) as compared to other treatments . However, it was recorded minimum in treatment K_1 (50 kg K_2O/ha). In case of vermicompost, the treatment VC₁ (20 t VC ha⁻¹), recorded significantly maximum in all the parameters while minimum was observed in VC_0 (0 t VC ha⁻¹). Significantly maximum in all parameters (Leaf area plant , leaf area index, NAR and CGR) were noted in treatment combination K_3VC_1 (150 kgK₂O/ha + 20 t VC/ha) followed by K_2VC_1 (100 kgK₂O/ha + 20 t VC/ha) at 30, 60 and 90 DAP, respectively. While, it was recorded lowest in treatment K_1VC_0 (50 $kgK_2O/ha + 0 t VC/ha$). The interaction effect of year and potassium (YXP), year and vermicompost (YXV) and year, potassium and vermicompost (YXPXV) on leaf area plant⁻¹ were non-significant in all parameters (Leaf area plant⁻¹, leaf area index, NAR and CGR) at 30,60, and 90 DAP respectively.

Key words: NAR, CGR, LAI, Vermicompost, Potassium

INTRODUCTION

The potato (*Solanum tuberosum* L.) is one of the most important food crops both in developed as well as in developing countries. Due to its diversified uses in developed countries as food, feed raw material for producing starch. The potato was generally regarded to be a crop suited for western world. The origin of potato is Peru, South America and belongs to family Solanaceae). In Madhya Pradesh the total area under potato cultivation is 136.0 thousand ha, with production 3048.0 thousand metric tons and productivity is 22.41 mt/ha (Anonymous 2014- 15).

Cite this article: Agrawal, S., Lekhi, R., Patidar, P., Gangle, P., Effect of Different Levels of Potassium and Vermicompost on Physiological Parameters Leaf Area Plant⁻¹, Leaf Area Index, Crop Growth Rate And Net Assimilation Rate Of Potato (*Solanum tuberosum* L.), *Int. J. Pure App. Biosci.* **6**(1): 666-671 (2018). doi: http://dx.doi.org/10.18782/2320-7051.5853

ISSN: 2320 - 7051

Potato required a numbers of macro and micro plant nutrients for the growth and development of nitrogen, phosphorus and potassium are the most essential plant nutrients that are largely required by potato⁴ being strong K loving crop potato required K in larger amount that in consumes N and P K is essential required for synthesis sugar and starch and also for translocation of carbohydrate; it also place and important role in maintaining growth and bigger of the plant⁷. Using of vermicompost is now a global movement for the second green revolution that emphasizes on composting. Vermicomposting is the science of producing compost from biodegradable organic matters through earthworms.

MATERIAL METHODS

The experiment was laid out in randomized complete design (RCBD) with eight treatments replicated three times. The field experiment was laid out in the experimental field of department of Horticulture, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior (M. P.) during autumn-winter season. Experiment was conducted in factorial randomized blocked design with three replication comprised of eight treatments combination $(K_1VC_0,$ K_1VC_1 , K_2VC_0 , K_2VC_1 , K_3VC_0 , K_3VC_1 , K_4VC_0 , K_4VC_1). As per the treatment vermicompost was applied during final land preparations full dose of Phosphorus and Potash applied as basal dose. Half of nitrogen was applied as basal dose and remaining half was applied as top dressing at the time of first earthing up (30 days after planting). Plant observation such as, LAI, CGR, NAR and Leaf Area/Plant were recorded at 30, 60 and 90 DAP.

To calculate these parameters following formulae were used:

Leaf area index

where,

A= Leaf area

P= Ground area

Net assimilation rate (mg cm²⁻¹ day⁻¹) Where,

 A_1 and W_1 are the leaf area and dry weight of the plant sample respectively at time t_1 and A_2 and W_2 are the leaf area and dry weight of the plant sample respectively at time t_2 .

=

CGR

 $W_2 - W_1$

 $P(T_2 - T_1)$

Crop growth rate (g m²⁻¹ day⁻¹)

where,

 $P = Ground area on which W_1 and W_2 were estimated.$

 W_1 = Dry weight of plant at 1st observation.

 W_2 = Dry weight of plant at 2nd observation.

 $T_1 \& T_2 =$ interval between observation.

RESULT AND DISCUSSION Leaf area plant⁻¹ (cm²)

Based on both year and pooled, data reveals that leaf area plant⁻¹ was significantly influenced by various treatments of levels of potassium and vermicompost. The significantly maximum (204.99, 308.93 and 369.97 cm²) leaf area plant⁻¹ was observed under the treatment K₃ (150 kgK₂O/ha) followed by K₂ (100 **Copyright © Jan.-Feb., 2018; IJPAB** kgK₂O/ha) (179.95, 271.52 and 333.51 cm²) as compared to other treatments at 30, 60 and 90 DAP, respectively. However, it was recorded minimum (94.49, 157.74 and 178.96 cm²) in treatment K₁ (50 kgK₂O/ha) at 30, 60 and 90 DAP, respectively. In case of vermicompost, the significantly maximum (168.61, 257.47 and 307.09 cm²) was obtained in treatment VC₁ (20 t VC ha⁻¹), however, minimum (140.82, **667**

		А
LAI	=	
		Р

		W ₂ - W ₁		$\logA_2 - \logA_1$
NAR	=		Х	
		A_2-A_1		$(t_2 - t_1)$

ISSN: 2320 - 7051

220.06 and 264.60 cm²) was noted in VC₀ (0 t VC ha⁻¹) at 30, 60 and 90 DAP, respectively. Significantly maximum (230.56, 347.63 and 416.56 cm²) leaf area plant⁻¹ were noted in combination treatment K_3VC_1 (150) $kgK_2O/ha + 20 t VC/ha$) followed by K_2VC_1 (100 kgK₂O/ha+ 20 t VC/ha) (198.83, 292.83 and 355.53 cm²) at 30, 60 and 90 DAP, respectively. While, it was recorded lowest (88.32, 152.55 and 170.25 cm²) in treatment K_1VC_0 (50 kgK₂O/ha + 0 t VC/ha) at 30, 60 and 90 DAP, respectively. The interaction effect of year and potassium (YXP), year and vermicompost (YXV) and vear, potassium and vermicompost (YXPXV) on leaf area plant⁻¹ were non-significant at 30, 60 and 90 DAP.

Leaf area index

On the basis of pooled data reveals that K_3 (150 kg K_2O/ha) was significantly maximum (0.171, 0.258 and 0.308) leaf area index followed by K₂ (100 kgK₂O/ha) (0.150, 0.226 and 0.278) at 30, 60 and 90 DAP, respectively and it was calculated minimum (0.079, 0.131 and (0.149) in treatment K₁ at 30, 60 and 90 DAP, respectively. Similarly it was noted significantly maximum (0.141, 0.215 and 0.256) in treatment VC₁ (20 t VCha⁻¹), however, minimum (0.117, 0.183 and 0.221) was noted in VC₀ (0 t VC ha⁻¹) at 30, 60 and 90 DAP, respectively. Treatment combination K_3VC_1 (150 kgK₂O/ha + 20 t VC/ha) was noted significantly maximum (0.192, 0.290 and 0.347) leaf area index followed by K₂VC₁ (100 kgK₂O/ha+ 20 t VC/ha) (0.166, 0.244 and 0.296) at 30, 60 and 90 DAP, respectively however, it was recorded lowest (0.074, 0.127 and 0.142) in treatment K₁VC₀ (50 kgK₂O/ha + 0 t VC/ha) at 30, 60 and 90 DAP, respectively. The interaction effect of both year potassium (YXP), and vermicompost (YXV) and, potassium and vermicompost (YXPXV) on leaf area index were non-significant at 30, 60 and 90 DAP.

Net assimilation rate (mg cm²⁻¹ day⁻¹)

On the basis of both year the data clearly showed that the net assimilation rate (30-60

Copyright © Jan.-Feb., 2018; IJPAB

DAP and 60-90 DAP) was significantly influenced by the different treatments. The NAR in general increased at 60-90 DAP in all the treatments and same trend was notice in both the year. Significantly lowest (0.0011 mg cm²⁻¹ day⁻¹ at 30-60 DAP and 0.0130 mg $cm^{2-1} day^{-1}$ at 60-90 DAP) net assimilation rate was recorded in treatment K₃ $(150 \text{ kgK}_2\text{O/ha})$ followed by K_2 (100 kgK_2O/ha) (0.0012 mg cm²⁻¹ day⁻¹ at 30-60 DAP and 0.0201 mg cm^{2-1} day⁻¹ at 60-90 DAP and which were at par with each other at 30-60 DAP. It was calculated maximum $(0.0036 \text{ mg cm}^{2-1} \text{ day}^{-1} \text{ at } 30-60$ DAP and 0.0329 mg cm²⁻¹ day⁻¹ at 60-90 DAP) in treatment K₁. Vermicompost, treatment significantly lowest (0.0016 mg cm²⁻¹ day⁻¹ at 30-60 DAP and 0.0204 mg cm²⁻¹ day⁻¹ at 60-90 DAP) was noted in treatment VC_1 (20 t VC ha⁻¹), however, maximum (0.0025 mg cm²⁻¹ day⁻¹ at 30-60 DAP and $0.0244 \text{ mg cm}^{2-1} \text{ dav}^{-1}$ at 60-90 DAP) was noted in VC_0 (0 t VC ha⁻¹) .Significantly lowest (0.0005 mg cm²⁻¹ day⁻¹ at 30-60 DAP and 0.0078 mg cm²⁻¹ day⁻¹ at 60-90 DAP) net assimilation rate was calculated in treatment combination K_3VC_1 (150) $kgK_2O/ha + 20 t VC/ha$) followed by K_2VC_1 (100 kgK₂O/ha+ 20 t VC/ha) (0.0008 mg cm²⁻ 1 day⁻¹ at 30-60 DAP and 0.0179 mg cm²⁻¹ day-1 at 60-90 DAP) in first, second year and pooled, respectively and which were at par with each other at 30-60 DAP. However, it was recorded maximum (0.0038 mg cm²⁻¹ day⁻¹ at 30-60 DAP and 0.0333 mg cm^{2-1} day⁻¹ at 60-90 DAP) in treatment K₁VC₀ $(50 \text{ kgK}_2\text{O/ha} + 0 \text{ t VC/ha})$ in first, second year and pooled, respectively. The interaction effect of year and potassium (YXP), year and vermicompost (YXV) and year, potassium and vermicompost (YXPXV) on net assimilation rate were non-significant at 30- 60 and 60-90 DAP.

Crop growth rate (g m²⁻¹ day⁻¹)

On the basis of both year mean data clearly indicated that there was significant difference amongst the treatments at both the stages of observations. In general CGR increased with increase in crop growth stages and same trend was notice in both the year and pooled also.

The maximum (0.127 g m²⁻¹ day⁻¹ at 30-60 DAP and 1.186 g m^{2-1} day⁻¹ at 60-90 DAP) crop growth rate was observed under the treatment K_1 (50 kgK₂O/ha). Therefore, it was observed lowest (0.053 g m²⁻¹ day⁻¹ at 30-60 DAP and 0.205 g m^{2-1} day⁻¹ at 60-90 DAP) in K_3 (150 kgK₂O/ha) followed by K_2 $(100 \text{ kgK}_2\text{O/ha}) (0.054 \text{ g m}^{2-1} \text{ day}^{-1} \text{ at } 30\text{-}60$ DAP and 0.609 g m²⁻¹ day⁻¹ at 60-90 DAP) and which were at par with each 30-60 DAP. other at Vermicompost, treatment significantly lowest (0.064 g cm²⁻¹ day⁻¹ at 30-60 DAP and 0.618 g cm²⁻¹ day⁻¹ at 60-90 DAP) was noted in treatment VC_1 (20 t VC ha⁻¹) and maximum (0.099 g cm²⁻¹ dav⁻¹ at 30-60 DAP and 0.724 g cm²⁻¹ day⁻¹ at 60-90 DAP) was noted in VC_0 (0 t VC ha⁻¹) in both year mean, respectively.

Significantly lowest 0.030 g cm²⁻¹ day 1 at 30-60 DAP and 0.107 g m $^{2-1}$ day $^{-1}$ at 60-90 DAP) crop growth rate was calculated in treatment combination K_3VC_1 (150) $kgK_2O/ha + 20 t VC/ha$) followed by K_2VC_1 (100 kgK₂O/ha+ 20 t VC/ha) (0.036 g cm²⁻¹ day⁻¹ at 30-60 DAP and 0.302 g cm²⁻¹ day⁻¹ at 60-90 DAP) and which were at par with each other at 30-60 DAP only. However, it was recorded maximum (0.135 g cm²⁻¹ day⁻¹ t 30-60 DAP and 1.241 g m²⁻¹ day⁻¹ at 60-90 DAP) in treatment K_4VC_0 (200 kgK₂O/ha + 0 t VC/ha)

The interaction effect of year and potassium (YXP), year and vermicompost (YXV) and year, potassium and vermicompost (YXPXV) on crop growth rate were non-significant at 30- 60 and 60-90 DAP. This could be due to the application of doses of potassium fertilizer increase the uptake/ availability of nitrogen, which might be promoting growth to enhance synthesis of or accumulation of proteins, enzymes amino acids and which are responsible for cell division and cell elongation thus resulted in improvement in leaf area index. The findings are in close harmony with the result of Singh and Lal Sandhu et al., Azarpour et al. and Fekadu Asfaw . The increase in leaf area index in response to increasing rate of potassium and vermicompost may be ascribed to the availability of optimum nutrients contained in manure that led to high leaf area index through facilitated vegetative growth. The findings are in close harmony with the result of Banerjee et al. This revealed that as the LAI increased the shading effect of the leaves may have caused reduction in photosynthesis and NAR. It may also be due to the reduced photosynthesis of the older leaves. These findings are in agreement with the findings of Banerjee et al.

		Leaf area plant ⁻¹ (cm ²) at								
Treat.	Treatment		First year		Second year			Pooled		
Symb.		30 DAP	60 DAP	90 DAP	30 DAP	60 DAP	90 DAP	30 DAP	60 DAP	90 DAP
K ₁	50 kgK ₂ O/ha	89.06	151.17	170.77	99.92	164.30	187.15	94.49	157.74	178.96
K ₂	100 kgK ₂ O/ha	172.91	262.58	321.93	186.99	280.47	345.08	179.95	271.52	333.51
K ₃	150 kgK ₂ O/ha	197.18	298.93	356.62	212.80	318.94	383.33	204.99	308.93	369.97
K_4	200 kgK ₂ O/ha	133.29	208.90	251.00	145.56	224.84	270.87	139.42	216.87	260.94
SEm ±		1.75	1.24	1.87	1.84	2.03	2.77	1.19	1.15	1.65
CD 5%		5.32	3.75	5.68	5.59	6.15	8.41	3.44	3.33	4.79
VC ₀	0 t VC/ha	134.61	211.92	254.38	147.03	228.21	274.81	140.82	220.06	264.60
VC ₁	20 t VC/ha	161.61	248.87	295.78	175.60	266.07	318.40	168.61	257.47	307.09
SEm ±		1.24	0.87	1.32	1.30	1.43	1.96	0.84	0.81	1.17
CD 5%		3.76	2.65	4.02	3.95	4.35	5.94	2.43	2.36	3.39
K ₁ VC ₀	50 kgK ₂ O/ha + 0 t VC/ha	83.25	146.23	162.07	93.39	158.87	178.43	88.32	152.55	170.25
K ₁ VC ₁	50 kgK ₂ O/ha + 20 t VC/ha	94.87	156.12	179.47	106.44	169.73	195.86	100.65	162.92	187.67
K ₂ VC ₀	100 kgK2O/ha+ 0 t VC/ha	154.33	241.57	300.27	167.80	258.85	322.70	161.07	250.21	311.49
K_2VC_1	100 kgK2O/ha+ 20 t VC/ha	191.49	283.58	343.59	206.18	302.08	367.47	198.83	292.83	355.53
K ₃ VC ₀	150 kgK ₂ O/ha+ 0 t VC/ha	172.29	260.69	311.62	186.56	279.79	335.16	179.42	270.24	323.39
K ₃ VC ₁	150 kgK ₂ O/ha+ 20 t VC/ha	222.07	337.16	401.62	239.04	358.10	431.49	230.56	347.63	416.56
K ₄ VC ₀	200 kgK ₂ O/ha + 0 t VC/ha	128.57	199.19	243.58	140.35	215.33	262.96	134.46	207.26	253.27
K_4VC_1	200 kgK2O/ha + 20 t VC/ha	138.02	218.62	258.43	150.76	234.35	278.78	144.39	226.48	268.60
SEm ±		2.48	1.75	2.65	2.61	2.87	3.92	1.68	1.63	2.34
CD 5%		7.52	5.31	8.04	7.90	8.70	11.89	4.86	4.71	6.77

Table 1: Leaf area plant⁻¹ (cm²) at different stages of potato as influenced by different levels of potassium and vermicompost at first, second year and pooled

Int. J. Pure App. Biosci. 6 (1): 666-671 (2018)

Table 2: Leaf area index at different stages of potato as influenced by different levels
of potassium and vermicompost at first, second year and pooled

		Leaf area index at								
Treat. Symb.	Treatment		First year		Second year			Pooled		
	Treatment	30 DAP	60 DAP	90 DAP	30	60	90	30	60	90 DAP
		50 DAP	00 DAP	90 DAP	DAP	DAP	DAP	DAP	DAP	JUDAI
K ₁	50 kgK ₂ O/ha	0.074	0.126	0.142	0.085	0.137	0.156	0.079	0.131	0.149
K ₂	100 kgK ₂ O/ha	0.144	0.219	0.268	0.156	0.234	0.288	0.150	0.226	0.278
K ₃	150 kgK ₂ O/ha	0.164	0.249	0.297	0.177	0.266	0.320	0.171	0.258	0.308
K4	200 kgK ₂ O/ha	0.111	0.174	0.209	0.121	0.187	0.226	0.116	0.181	0.218
SEm ±		0.003	0.004	0.004	0.003	0.006	0.003	0.002	0.003	0.002
CD 5%		0.010	0.012	0.011	0.009	0.019	0.010	0.006	0.010	0.007
VC ₀	0 t VC/ha	0.112	0.177	0.212	0.123	0.190	0.229	0.117	0.183	0.221
VC ₁	20 t VC/ha	0.135	0.208	0.246	0.147	0.222	0.265	0.141	0.215	0.256
SEm ±		0.002	0.003	0.003	0.002	0.005	0.002	0.001	0.002	0.002
CD 5%		0.007	0.008	0.008	0.006	0.014	0.007	0.004	0.007	0.005
K ₁ VC ₀	50 kgK ₂ O/ha + 0 t VC/ha	0.069	0.122	0.135	0.078	0.132	0.149	0.074	0.127	0.142
K_1VC_1	50 kgK ₂ O/ha + 20 t VC/ha	0.079	0.130	0.149	0.092	0.141	0.163	0.085	0.136	0.156
K ₂ VC ₀	100 kgK ₂ O/ha+ 0 t VC/ha	0.129	0.202	0.250	0.140	0.216	0.269	0.134	0.209	0.260
K_2VC_1	100 kgK ₂ O/ha+ 20 t VC/ha	0.160	0.236	0.286	0.172	0.252	0.306	0.166	0.244	0.296
K ₃ VC ₀	150 kgK ₂ O/ha+ 0 t VC/ha	0.144	0.217	0.259	0.156	0.234	0.279	0.150	0.225	0.269
K ₃ VC ₁	150 kgK ₂ O/ha+ 20 t VC/ha	0.185	0.281	0.335	0.199	0.298	0.360	0.192	0.290	0.347
K ₄ VC ₀	200 kgK ₂ O/ha + 0 t VC/ha	0.107	0.166	0.203	0.117	0.179	0.219	0.112	0.173	0.211
K ₄ VC ₁	200 kgK ₂ O/ha + 20 t VC/ha	0.115	0.182	0.215	0.126	0.195	0.232	0.120	0.189	0.224
SEm ±		0.005	0.005	0.005	0.004	0.009	0.005	0.003	0.005	0.003
CD 5%		0.014	0.016	0.016	0.012	0.027	0.015	0.008	0.014	0.009

Table 3: Net assimilation rate during at different stages of potato as influenced by different levels of potassium and vermicompost at first, second year and pooled

Treat. Symb.	Treatment	Net assimilation rate (mg cm ²⁻¹ day ⁻¹) at								
		First	t year	Secon	d year	Pooled				
		30-60 DAP	60-90 DAP	30-60 DAP	60-90 DAP	30-60 DAP	60-90 DAP			
K ₁	50 kgK ₂ O/ha	0.0037	0.0341	0.0036	0.0316	0.0036	0.0329			
K ₂	100 kgK ₂ O/ha	0.0011	0.0203	0.0012	0.0200	0.0012	0.0201			
K ₃	150 kgK ₂ O/ha	0.0011	0.0134	0.0010	0.0126	0.0011	0.0130			
K ₄	200 kgK ₂ O/ha	0.0024	0.0244	0.0023	0.0230	0.0023	0.0237			
$SEm \ \pm$		0.0001	0.0010	0.0001	0.0009	0.0001	0.0006			
CD 5%		0.0002	0.0030	0.0003	0.0028	0.0002	0.0018			
VC ₀	0 t VC/ha	0.0025	0.0253	0.0025	0.0236	0.0025	0.0244			
VC ₁	20 t VC/ha	0.0016	0.0208	0.0016	0.0199	0.0016	0.0204			
$SEm \pm$		0.00004	0.0007	0.0001	0.0007	0.0000	0.0004			
CD 5%		0.00013	0.0022	0.0002	0.0020	0.0001	0.0013			
K ₁ VC ₀	50 kgK ₂ O/ha + 0 t VC/ha	0.0039	0.0348	0.0037	0.0317	0.0038	0.0333			
K_1VC_1	50 kgK ₂ O/ha + 20 t VC/ha	0.0035	0.0335	0.0034	0.0315	0.0035	0.0325			
K ₂ VC ₀	100 kgK ₂ O/ha+ 0 t VC/ha	0.0015	0.0228	0.0017	0.0218	0.0016	0.0223			
K_2VC_1	100 kgK ₂ O/ha+ 20 t VC/ha	0.0008	0.0177	0.0008	0.0182	0.0008	0.0179			
K ₃ VC ₀	150 kgK ₂ O/ha+ 0 t VC/ha	0.0017	0.0188	0.0016	0.0176	0.0016	0.0182			
K ₃ VC ₁	150 kgK ₂ O/ha+ 20 t VC/ha	0.0005	0.0080	0.0005	0.0075	0.0005	0.0078			
K ₄ VC ₀	200 kgK ₂ O/ha + 0 t VC/ha	0.0031	0.0246	0.0029	0.0233	0.0030	0.0240			
K ₄ VC ₁	200 kgK ₂ O/ha + 20 t VC/ha	0.0017	0.0242	0.0016	0.0226	0.0017	0.0234			
$SEm \ \pm$		0.0001	0.0014	0.0001	0.0013	0.0001	0.0009			
CD 5%		0.0003	0.0043	0.0004	0.0040	0.0002	0.0026			

Int. J. Pure App. Biosci. **6** (1): 666-671 (2018)

 Table 4: Crop growth rate at different stages of potato as influenced by different

levels of potassium and	vermicompost at first.	second year and pooled
revers of potussium and	ver meompose at mist,	, second year and pooled

TD (Crop growth rate (30-60 DAP) at								
Treat. Symb.	Treatment	First	year	Secon	d year	Po	oled			
Symb.		30-60 DAP	60-90 DAP	30-60 DAP	60-90 DAP	30-60 DAP	60-90 DAP			
K1	50 kgK ₂ O/ha	0.127	1.183	0.127	1.189	0.127	1.186			
K2	100 kgK ₂ O/ha	0.052	0.606	0.056	0.612	0.054	0.609			
K3	150 kgK ₂ O/ha	0.053	0.202	0.053	0.208	0.053	0.205			
K_4	200 kgK ₂ O/ha	0.094	0.682	0.092	0.688	0.093	0.685			
SEm ±		0.002	0.035	0.004	0.034	0.002	0.022			
CD 5%		0.005	0.105	0.011	0.105	0.006	0.063			
VC ₀	0 t VC/ha	0.098	0.722	0.100	0.727	0.099	0.724			
VC ₁	20 t VC/ha	0.065	0.615	0.064	0.621	0.064	0.618			
$SEm \pm$		0.001	0.025	0.003	0.024	0.001	0.015			
CD 5%		0.004	0.074	0.008	0.074	0.004	0.045			
K ₁ VC ₀	50 kgK ₂ O/ha + 0 t VC/ha	0.135	1.239	0.134	1.244	0.135	1.241			
K ₁ VC ₁	50 kgK ₂ O/ha + 20 t VC/ha	0.120	1.128	0.119	1.134	0.120	1.131			
K ₂ VC ₀	100 kgK ₂ O/ha+ 0 t VC/ha	0.067	0.611	0.077	0.617	0.072	0.614			
K ₂ VC ₁	100 kgK2O/ha+ 20 t VC/ha	0.036	0.300	0.036	0.305	0.036	0.302			
K ₃ VC ₀	150 kgK ₂ O/ha+ 0 t VC/ha	0.076	0.600	0.075	0.607	0.075	0.603			
K ₃ VC ₁	150 kgK ₂ O/ha+ 20 t VC/ha	0.030	0.104	0.030	0.110	0.030	0.107			
K_4VC_0	200 kgK ₂ O/ha + 0 t VC/ha	0.116	0.736	0.115	0.742	0.115	0.739			
K_4VC_1	200 kgK ₂ O/ha + 20 t VC/ha	0.072	0.628	0.070	0.633	0.071	0.631			
SEm ±		0.003	0.049	0.005	0.049	0.003	0.031			
CD 5%		0.008	0.149	0.016	0.148	0.008	0.090			

CONCLUSION

On the basis of present experiment results revealed that Physiological parameters viz., leaf Area/ Plant, LAI, CGR and NAR were found superior in Treatment K_3 (150 kg K_2 O) as compared to other treatments. Treatment VC₁ was found superior in case of Vermicompost for all the parameters. In treatment combination K_3Vc_1 was found best for all the growth analytical parameters

REFERENCES

- Al-Moshileh, A. M.; Errebhi, M. A. and Motawei, M. I. Effect of various potassium and nitrogen rates and splitting methods on potato under sandy soil and arid environmental conditions. *Emir. J. Agric. Sci.* 17 (1): 01-09. (2005).
- Azarpour, Ebrahim; Moraditochaee, Maral and Bozorgi, Hamid Reza. Effect of nitrogen fertilizer management on growth analysis of rice cultivars. *International Journal of Biosciences.* 4 (5): 35-47. (2014).
- Banerjee, A.; Datta, J. K. and Mondal, N. K. Changes in morpho-physiological traits of mustard under the influence of different fertilizers and plant growth regulator

cycocel. Journal of the Saudi Society of Agricultural Sciences. **11** (2): 89–97. (2012).

- Banerjee, Fekadu Asfaw. Effect of integrated soil amendment practices on growth and seed tuber yield of potato (*Solanum tuberosum* L.) at Jimma Arjo, Western Ethiopia. *Journal of Natural Sciences Research*. 6 (15): 38-63. (2016).
- Sandhu, K. S.; Shahi, M. S.; Sharma, R. K. and Singh, Gurbax. Effect of fertility levels and varieties on tuber yield and processing quality of french fry grade potato. *Journal Krishi Vigyan.* 4 (2): 28-31. (2016)
- Singh, S.S. and Lal, S. S. Effect of potassium levels and its uptake on correlation between tuber yield and yield attributing characters in potato (*Solanum tuberosum* L.) var. Kufri Pukhraj. *The Asian Journal of Horticulture*. 7 (2): 392-396. (2012)
- Singh J. P., Marwha, J. S., Grhewal, J. S. Effect of sources and level of potassium on potato yield, quality and storage behavior. *J. of Indian Potato Association.*23: 153-156. (1996).